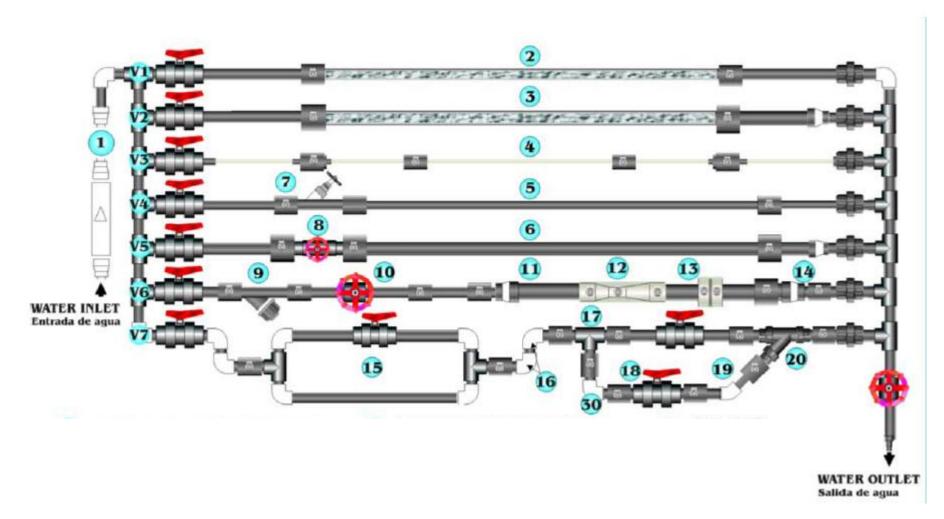


LABORATORIO ESPECIALIZADO DE FÍSICA ÁREA ARQUITECTURA-CONSTRUCCIÓN

EQUIPO DE FRICCIÓN EN TUBERÍAS CON GRUPO DE ALIMENTACIÓN HIDRÁULICA (FME00/B) AFT/B

INICIACIÓN A LA INVESTIGACIÓN ESTUDIANTIL

Este equipo está diseñado para estudiar el comportamiento de los flujos cerrados.


Permite el estudio de las pérdidas de carga tanto en tuberías como en diferentes accesorios hidráulicos.

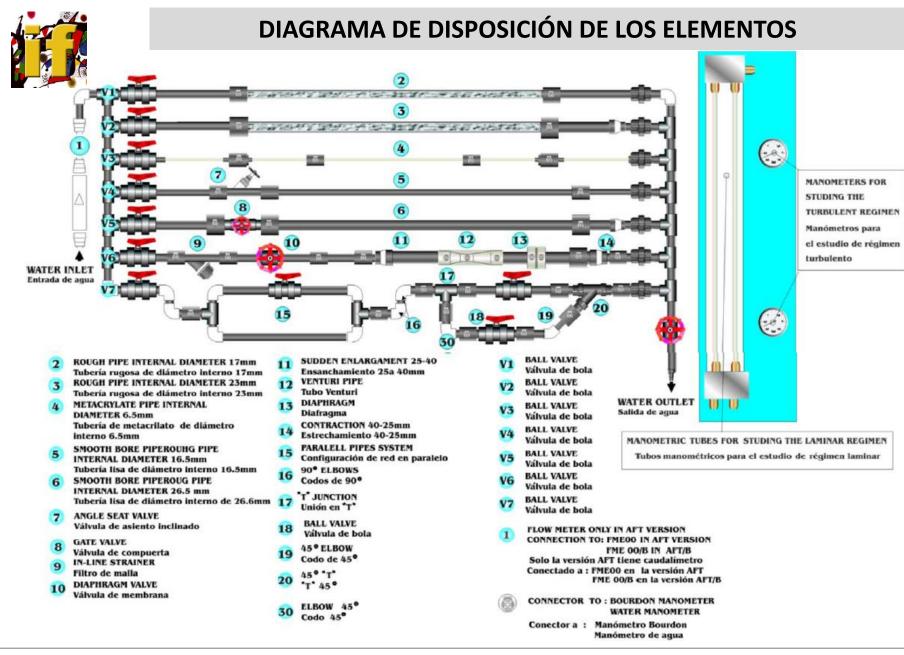

Las pérdidas por fricción en tuberías rectas de diferentes tamaños pueden investigarse sobre un determinado rango del numérico de Reynolds

DIAGRAMA DE DISPOSICIÓN DE LOS ELEMENTOS



INICIACIÓN A LA INVESTIGACIÓN ESTUDIANTIL

tp TOMAS DE PRESIÓN

Nº	CAUDALÍMETRO
C1	Caudalímetro

Nº	MANÓMETROS
M1	Tubos manométricos (régimen laminar)
M2	Manómetros (régimen turbulento)

RELACIÓN DE PRÁCTICAS

Nº	Práctica
1	Pérdida de carga por fricción en tubería rugosa de diámetro interior 17mm
2	Pérdida de carga por fricción en tubería rugosa de diámetro interior 23mm
3	Pérdida de carga por fricción en tubería lisa de diámetro interior 6.5mm
4	Pérdida de carga por fricción en tubería lisa de diámetro interior 16.5mm
5	Pérdida de carga por fricción en tubería lisa de diámetro interior 26.5mm

RELACIÓN DE PRÁCTICAS

Nº	Práctica
6	Influencia del diámetro en la pérdida de carga por fricción en tuberías rugosas
7	Influencia del diámetro en la pérdida de carga por fricción en tuberías lisas
8	Pérdida de carga por fricción en tuberías lisas y rugosas
9	Coeficiente de fricción en tubería rugosa de diámetro interior 17mm
10	Coeficiente de fricción en tubería rugosa de diámetro interior 23mm
11	Coeficiente de fricción en tubería lisa de diámetro interior 6.5mm

RELACIÓN DE PRÁCTICAS

Nō	Práctica
12	Coeficiente de fricción en tubería lisa de diámetro interior 16.5mm
13	Coeficiente de fricción en tubería lisa de diámetro interior 26.5mm
14	Influencia del diámetro en el coeficiente de fricción en tuberías rugosas
15	Influencia del diámetro en el coeficiente de fricción en tuberías lisas
16	Coeficiente de fricción en tuberías lisas y rugosas
17	Pérdidas de carga en la válvula de asiento inclinado
18	Pérdidas de carga en la válvula de compuerta
19	Pérdidas de carga en el filtro

RELACIÓN DE PRÁCTICAS

Nō	Práctica
20	Pérdidas de carga en la válvula de membrana
21	Pérdidas de carga en un ensanchamiento brusco
22	Pérdidas de carga en el Venturi
23	Pérdidas de carga en el diafragma
24	Pérdidas de carga en la contracción brusca
25	Pérdidas de carga en los accesorios
26	Medidas de caudal mediante pérdida de carga en un Venturi
27	Medidas de caudal mediante pérdida de carga en un diafragma
28	Medidas de caudal mediante pérdida de carga

RELACIÓN DE PRÁCTICAS

Nº	Práctica
29	Pérdidas de carga en una bifurcación simétrica
30	Pérdidas de carga tras dos codos de 90º
31	Pérdidas de carga en una "T"
32	Pérdidas de carga en un codo de 90º
33	Pérdidas de carga en una válvula de bola
34	Pérdidas de carga en un codo de 45º
35	Pérdidas de carga en una "T" inclinada
36	Estudio del régimen laminar
37	Estudio del régimen turbulento

La presentación se realiza exclusivamente con fines educativos.

Las fotos corresponden al equipo instalado en el Laboratorio Especializado de Física. Área Arquitectura-Construcción. IEC.

Los componentes están identificados a partir de la descripción del equipo disponible en:

http://www.edibon.com/products/catalogues/es/units/fluidmechanicsaerodyna mics/fluidmechanicsgeneral/AFT-B.pdf

> Alicia Gadea Coordinadora Académica proyectointerfis@gmail.com

LABORATORIO ESPECIALIZADO DE FÍSICA ÁREA ARQUITECTURA-CONSTRUCCIÓN

EQUIPO DE FRICCIÓN EN TUBERÍAS CON GRUPO DE ALIMENTACIÓN HIDRÁULICA (FME00/B) AFT/B